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A fusion of the highly successful methods of harmonic and statistical 
linearization is used as a first approximation in determining, either itera- 
tively or via a nonlinear integral equation, the effects of higher harmonics 
and non-Gaussian distortion terms on the second-order statistics of a wide 
variety of nonlinear stochastic differential equations perturbed by some 
linear combination of Gaussian noise and a periodic deterministic/stochastic 
excitation. Physical a posteriori applicability criteria are presented which 
justify when these higher order effects may be neglected. A simple modifica- 
tion of this statistical-harmonic linearization procedure based upon the 
Fokker-Planck variance is proposed. 

KEY W O R D S  : Nonlinear stochastic differential equation ; random noise ; 
harmonic excitation. 

1.  I N T R O D U C T I O N  

This article is the third in a series o f  papers  (1,2) on the calculat ion of  approxi-  

mate  second-order  statistics for  the certain class o f  nonl inear  stochastic 

differential equat ions  defined by 

: 

where Q(d/dt), R(d/dt), and U(d/dt) are l inear differential opera tors  o f  t ime 

and Y ( t ) =  Y[x(t), 2(t),...] is some general nonl inear i ty  which may be 
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piecewise continuous or of Heaviside type. The first two papers, hereafter 
referred to as I and II, restricted the external excitation F(t) to Gaussian 
noise. This report will extend the methodology developed in those previous 
articles to include excitations which are a linear combination of Gaussian 
and periodic deterministic or stochastic signals. 

The approach taken in this paper is a fusion of the methods of statistical 
and harmonic linearization. <1-3~ Harmonic linearization is an offshoot of the 
asymptotic analysis developed by Krylov and Bogoliubov (see Refs. 3 and 4) 
to study the response of nonlinear deterministic differential equations to 
periodic disturbances. By assuming that the steady state or stable limit cycle 
solution can be adequately approximated by a function periodic in the first 
harmonic, this linearization, as its name connotes, involves keeping at most 
the first harmonic in a Fourier expansion of the nonlinearity Y(t). Thus, Eq. 
(1) can be decomposed into two linear equations, one characterizing the zeroth 
harmonic and the other the first harmonic. Both equations, however, are 
coupled via numerical Fourier coefficients, which formally are often nonlinear. 
Inasmuch as the effect of the forcing function is to initiate asymmetric oscilla- 
tions with respect to the independent variables of the nonlinearity, these basic 
equations may be further simplified in the absence of this excitation, since 
even the zeroth harmonic may be discarded. On the other hand, they may 
become more complicated by introducing the higher harmonics. ~ 

When F(t) is some linear combination of Gaussian noise and a deter- 
ministic sinusoidal signal the statistics of the solution will exhibit purely 
Gaussian, periodic, and cross-modulation terms due to the interference 
between the random and harmonic components of the excitation. In a vein 
similar to the original harmonic and statistical linearization procedures, the 
combined statistical-harmonic linearization method assumes a solution in 
the form of the sum of two functions, one purely Gaussian and the other 
periodic in the first harmonic. By linearizing Y(t) in accordance with this 
prescription, Eq. (1) again eventuates into a set of two linear equations, the 
first expressive of the Gaussian noise component and the second of the 
periodic component. Both equations are nonlinearly coupled via statistically 
calculated coefficients. 

Although the rudiments of this technique have been applied with great 
success by a number of authors ~-7~ to various specific problems, very little 
progress has been made to systematize the linearization procedures involved. 
This becomes transparent upon perusal of the pertinent literature and dis- 
covering the variety of heuristics invoked in the treatment of nonlinear 
systems exhibiting self-oscillations or when calculating the effective frequency 
for lightly damped, weakly anharmonic oscillator equations subjected to 
Gaussian excitations. 

We therefore propose to reexamine the joint statistical-harmonic 
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linearization scheme as a subset of a much more complicated, yet more exact 
approach. We begin in Section 2 with a brief description of a modified Krylov-  
Bogoliubov method due to Popov and Palitov, ~4> whence harmonic lineariza- 
tion is derived and improved upon by the inclusion of higher harmonics. 

In Section 3, we indicate what modifications of the harmonic and 
statistical linearization methods are necessary in order to study the approxi- 
mate statistical response of system (1) to a combined input of Gaussian noise 
and a deterministic sinusoidal waveform. Physical a posteriori applicability 
criteria justifying linearization are discussed. An iterative scheme delimiting 
the influence of the higher harmonics on this approximation is derived in 
Section 4. 

One can go one step beyond statistical-harmonic linearization by includ- 
ing in (1) the Gaussian distortion terms and terms in the higher harmonics 
arising due to the nonlinearity. This is illustrated in Section 5 with a specific 
example of an anharmonic oscillator Y( t )  = x 2u+1, N = 1, in which the 
excitation F(t)  can either be the one considered previously in Section 3 or a 
linear combination of Gaussian noise and a random pulse (rectangular waves, 
sawtooth waves, etc.). The effect of including these higher order terms leads 
to an autocorrelation function equation of the quasilinear Green's function 
type. (1~ This equation has been demonstrated in II to yield results superior to 
statistical linearization when F( t )  is Gaussian-delta-corretated noise. It is 
this author's contention that it will also be superior to statistical-harmonic 
linearization. The results of an extensive numerical computation for all the 
methods delineated here and their analog computer comparison will be the 
subject of a forthcoming paper. 

, H A R M O N I C  L I N E A R I Z A T I O N  OF N O N L I N E A R  
D E T E R M I N I S T I C  D I F F E R E N T I A L  E Q U A T I O N S  

Consider the nonlinear deterministic differential equation defined in (1) 
and suppose, for now, that F( t )  is the harmonic signal 

F( t )  = a(v 1~ sin f2Ft (2) 

and, for simplicity, Y( t )  = f ( x ( t ) ,  2(t)),  

d x 

The frequency f2F is a locked-in mode and the system in (3) responds by 
following this harmonic. 

The conditions under which the stable periodic limit cycle solution x = 
a sin(f2Ft + 0) exists may be determined by an asymptotic analysis due to 
Popov and PalitovJ 4~ This entails assuming a solution of the form 

x( t )  = Xo(t) + x l ( t )  + x(t)  (4) 
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where Xo(t), xl(t), and x(t), respectively, denote the contributions of the 
zeroth, first, and higher harmonics resulting from the nonlinearity f (x ,  2), 
with 

xl(t) = a s in (~ t  + 0) (5a) 

x(t) = ~ 3ka sin(kflFt + Ok)= ~ xk(t) (5b) 
k = 2  k = 2  

The function Xo(t) reflects the asymmetry of the homogeneous equation 
response due to the external excitation F(t) and/or asymmetry of the non- 
linearity f (x ,  2) around some origin. It may be set equal to zero if F(t) - 0 
or if f (x, 2) is a symmetric function of its independent variables. The coeffi- 
cients 3~ = ada (8~ << 1) in (5b) play the role of small parameters and ensure 
that the first harmonic is dominant in the solution of (3). 

Our asymptotic analysis now proceeds in the following fashion. We 
examine the effects of x(t) on x(t) by performing a Taylor series expansion 
on f (x ,  2), 

f (x ,  2) = f(xo + xl ,  20 + $q) + -~f(xo + xl,  20 + Yq)x(t) 

+ -~xf(Xo + xl,  Xo + xl)ir + O(3~ 2) (6) 

which, when expressed in terms of a Fourier series expansion, becomes 

f (x ,  2) ~ fo + f l  + ~ f~ + ~ gk (7) 
k = 2  k=O 

where 

f0 2~ fo = (1/2~r) f(xo + xl ,  20 + 21)d~b (8a) 

f l  = q(xo, a)a sin(~Ft + 0) + q'(xo, a)a COS(~Ft + 0) (8b) 

)fo ~ 
q = (1/zra f(xo + xl,  2o + 21) sin ~b d~b (8c) 

q' = Oh,a) f(xo + x l ,  2~ + 21) cos ~ d~ (Sd) 

with ~ = ~Ft + 0 and where 

fk = qk(xo, a)a sin(kraFt + Ok) + qk'(xo, a)a cos(k~Ft + Ok) (9a) 

f? qk = (lfira) f(xo + xl ,  20 + 21)sin(k~ +/~k) d~ (9b) 
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qk' -- (lfira) f(xo + x l ,  Xo + xl)cos(k~b + tzk)d4, (9c) 

f? go = (lfira) [(~/Ox)f(xo + x l ,  xo + Yq)X 

+ (O/O2)f(xo + x l ,  2o + 2~)2] de (10a) 

gk = B~a sin(k~vt + Ok) + Cka cos(k~Ft + Ok) (10b) 

fo 2~ Bk = (lfira) [(O/~x)f(xo + x~, YCo + 2~)X 

+ (~/02)f(xo + xz, 2o + 2)2] sin(kr + ~k)dr (10c) 

fo ~ C~ = (lfira) [(O/Ox)f(xo + x~, 20 + Yq)g 

+ (O/a2)f(xo + x l ,  2o + 2~))71 cos(kr +/zk) de (10d) 

with d? = kraft + 0h, /zl = 0, and I~ = Oe - kO (k >1 1). 
Substitution of (4) and (7) into (3) yields a hierarchy of n + 1 linear 

equations, one for each of the n + l harmonics, which are all nonlinearly 
related via the Fourier coefficients q, q', qk, q~', B~, and C~, 

R ~ Xo + Q [fo + go] = o ( l la )  

( d )  ( d ) [  q'(xo,a) d] 
R dt xl + Q ~ q(xo, a )+  ~ ~t]xl 

+ Q ~ g~ = a~ ) sin f~Ft (l lb) 

R ~ x~ + Q [f~ + g~] = o (1 lc) 

If the higher harmonics x~ are, as initially assumed, small in comparison 
to xo and x~, (llc) may be disregarded and the defining relations for the 
zeroth and first harmonics will now be given by 

Xo + Q ~ f o =  0 (12a) 

( d )  ( d ) [  q'(xo,a) d] a(~ ) 
R -~ x~ + Q -~ q(xo, a) + ~ ~ ] x ~  = s i n ~ t  (12b) 

The Fourier components go and g~ have been dropped from Eqs. (12a) and 
(12b) since they incorporate the higher harmonics k~F and are O(3~) with 
respect to fo and f~. 
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Relations (12a) and (12b) are what is commonly known as harmonic 
linearization. 

The conditions under which Eqs. (12a) and (12b) are valid have been 
termed the applicability criteria in I. Briefly, they state that the higher har- 
monics x~ will have a negligible effect in the solution of (3), even when the fk 
are not small, k /> 2, if 

1. (a) deg 0(if2r) < deg k'(if2p) 
(b) IO(ik~F)/k'(ikf~F)l << IO(if2F)/k'(if~F)l, k >1 2 
(c) lim[O(ikf~)/k'(ikf2F)l -+ 0 Vk 

k--~ oO 

2. The polynomials R'(ikf~) cannot have purely real zeros, k = 1, 2, 3 ..... 
This criterion guarantees stability of the solution, with transients dying out 
a s  t - -~  cx3. 2 

3. The functionf(x,  ~) should have finite partial derivatives with respect 
to its independent variables x and :t, and should not be an explicit function 
of time. Thusf(x,  ~) may belong to both the class of piecewise continuous and 
discontinuous functions of Heaviside type. 

The polynomials/~'(.) and Q(') are the Fourier-transformed 

a ~ ' (  sin 0 d )  
R(.) - --a- cos 0 ~)p ~ and Q(.) 

A lengthier discussion of these criteria and their consequences has been 
presented elsewhere. (3~ 

In the next section we show how harmonic and statistical linearization 
may be fused together in order to obtain the approximate second-order 
statistics for the nonlinear stochastic differential equation (1) in which F(t) 
is some linear combination of Gaussian-delta-correlated noise and a deter- 
ministic periodic signal. 

3. STATISTICAL AND H A R M O N I C  LINEARIZATION 

In the previous section we derived the harmonically linearized equations 
(12a) and (12b) for the zeroth and first harmonics of the stable solution to (3), 
the former, (12a), arising due to the imposition of the periodic excitation F(t) 
on the homogeneous part of (3), and the latter, (12b), arising due to the 
postulated form of the solution. The higher harmonics were discarded since 
they were considered O(3~) in magnitude. Both equations were nonlinearly 
coupled through the coefficients q and q'. 

If the excitation F(t) is a linear combination of Gaussian noise s and a 
harmonic signal 

F(t) = ~(t) + ate 1~ sin f2Ft (13) 

2 Criterion 2 was incorrectly stated in Ref. 1. This is the corrected version. 
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one may,  in a vein similar to the above,  postulate  a stable solution of  the 
fo rm 

x(t)  = xh(t) + x~(t) = a sin(f~Ft + 0) + x~(t) (14) 

where x~(t) is the ha rmonic  c o m p o n e n t  of  the solution and xr is the r a n d o m  
componen t  of  the solution. To  first order  in the solution variables xr and x~ 
we approx imate  the nonlineari ty  f ( x ,  Yc) as 

f ( x ,  2) ,.. hlxh + h2x~ + h3Ych + hjc~ (15) 

When  the applicabil i ty criteria are met ,  as is the case for  wideband  3 
r a n d o m  excitations, the coefficients hi .... , h4 may  be found th rough  the 
statistical l inearization formulas ,  (1~ 

h, = ( f ( x ,  2)xi) /a~ (16a) 

where we have used the assumpt ion  tha t  

(xixj)  = a~, 3~j, i , j  = 1 ..... 4 (16b) 

Fo r  convenience we have made  the correspondence  (x~, xe, 2h, 2e)---~ 
(x l ,  xz, x3, x4). Thus,  with 4 = f~Ft + 0, 

hi(a, f~F, ax ~, ~ 2) 

f? = (1/Tra) d4 sin 4 

+ m  

x tJ f (x2  + a sin 4, x4 + af2F cos 4)p(x2)p(x4) dx~ dx4 (17a) 
- c o  

h2(a, f ~ ,  ~ 2, ~ 2) 

x iJ x2f(x2 + a sin 4, x4 + af~F cos 4)p(x2)p(x~) dx2 dx4 (17b) 

h~(a, a~ ,  ~x ~, ~,~) 

f? = (1/~-aa~) d4 cos 4 

+ c o  

x t j f ( x  2 + a sin 4, x4 + a a ~  cos 4)p(x~)p(x~) dx~ &~ (17c) 

a For a given low-frequency filter with passband 0 _< ~ _< ~o~ a wideband excitation is 
one whose highest frequency ~o~ >> wo. 
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and 

h4(a, OF, ~x 2, ~ 2) 

= ( 1 / 2 ~ . ~ ,  d~  

+ c o  

x j j  x4f(xz + a sin ~b, x, + af2v cos ~b)p(x2)p(x,) dxz dx, (17d) 
- - o 0  

The averages taken in (17a)-(17d) are combined time and ensemble averages, 
with the former over the harmonic variable and the latter over the stochastic 
variable. 

It is important to point out as a caveat lector that when a system fails to 
obey the applicability criteria, the use of formulas (16a) and (16b) may not 
give the best results for the second-order statistics of (3). Such is the case, in 
fact, for narrowband random excitations in which the effective linear part of 
the system [O(if2F)/k'(if]v)[ is not much smaller than 1. Corresponding to this 
situation, the spectral density of the excitation may be either outside of the 
passband of the effective linear part of the system or much lower than the 
internal frequency of the effective linear part of the system. Statistical and/or 
harmonic linearization may still be utilized in the analysis of such systems, 
but not directly on Eq. (3). We will not go into these procedures in this paper, 
but refer the interested reader to Refs. 4 and 7. 

Insertion of relations (13)-(15) into Eq. (3) leads to two linear equations 
nonlinearly coupled via the coefficients hi ..... h4, 

d ~]x~( t )= u ( d ) ~ ( t )  (18a) 

u ~ j a F  sm f~et (18b) 

Defining the transfer functions qb~(if~F) and q~2(if2), 

e~(if~F) = O(if2F)/[(h~ + ih3f2F)O(if2v) + /~(if2F)] (19a) 

r ) = O(if2)/[(h2 + ih~f~)O(if2) +/~(if2)] (19b) 

one can obtain from Eqs. (18b) and (18a), respectively, the amplitude and 
phase of xh(t) relative to the periodic component of F(t) and the stationary 
autocorrelation function Rxx(t), 

a = I ~ l ( i ~ F ) l a ~  ~ (20a)  

0 = arg ~l(if~F) (20b) 

Rxx(t) = R~~ = (1/2~) e~"tld92(if2)[2 dr2 (20c) 
o~ 
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4. THE EFFECTS OF H I G H E R  H A R M O N I C S  ON THE 
A U T O C O R R E L A T I O N  F U N C T I O N  

When the applicability criteria described in the previous section do not 
apply to a particular system, i.e., for narrowband Gaussian noise whose 
spectrum lies outside of the passband of the effective linear part of the system, 
modification of statistical-harmonic linearization must be made in order for 
it to remain a viable solution technique. This can be done by the introduction 
of higher harmonics and has the added benefits in that the response to 
Gaussian noise and deterministic pulses and the effects of higher harmonic 
terms on self-oscillatory systems may be examined. 

As in the previous sections, we begin our discussion with Eq. (3), but 
now F(t) is a linear combination of harmonic signals and a not necessarily 
wideband Gaussian noise f(t), 

F(t)  = ~(t) + a~ 1~ sin f~Ft + ~ a~ ~ sin(lOFt + v,) 
1 = 2  

(21) 

When the random disturbance ~(t) has a wideband spectrum, then, in 
accordance with the arguments presented in Section 3, the effective linear part 
of the system filters out the high-frequency components of the noise. To a 
first approximation (in the linearization sense) one can therefore assume that 
~(t) couples with only the first harmonic of the deterministic signal and as a 
consequence seek a stable solution of (3) in the form 

x(t) = x,(t) + x~(t) + ~ xk(t), n >>. m (22) 
Ir  2 

where xr and x~(t) are the stochastic and deterministic processes defined in 
(14) and the x~(t) are the deterministic periodic functions defined in (5b). 

We now combine the method of statistical linearization and the Popov- 
Palitov techniques which were discussed in the previous sections to approxi- 
mate our nonlinearityf(x, 2) by 

f (x,  2) ~ hlxh + h2xe + h82~ + h42~ + ~ f~ + g~ 
I~=2 

(23) 

The first four terms of (23) are identical to those in (15) and represent the 
first harmonics and the purely Gaussian components of the nonlinearity. The 
statistically averaged coefficients hi,..., h4 are given in Eqs. (17a)-(17d). The 
summation over the fifth term and the last term represent the higher har- 
monics in the Fourier series expansion f (x,  2) and its derivative and are 
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defined by relations (7), (9), and (10b), but with Xo = 0. Higher order random 
terms arising due to the distortion of the Gaussian by the nonlinearity and 
analogous to the higher order harmonic terms have been neglected in this 
approximation o f f ( x ,  2). They will be considered in Appendix A, with a 
sample computation for the Duffing oscillator performed in Section 5. 

Substituting Eqs. (21)-(23) into (3) yields a hierarchy of n + 1 linear 
equations nonlinearly interrelated via the coefficients h~, qk, q~', B~, and C~ ,~ 

R(d)xr162 (24a) 

d R(d)xh(t)+ Q ( d ) [ h l  + B1 +h3f2F+f2F C1~] xh(t) 

= u(d)a~ ' sin ~2Ft (24b) 

d _~ 

= tJ~)a~ sin(lOFt + vl) 31k (24C) 

Equation (24a) describes the time evolution of the noise component xr 
whereas (24b) and (24c) describe, for each harmonic separately, the time 
evolution due to the periodic part of the solution. This system of equations 
may be solved iteratively to obtain the autocorrelation function Rxx(t) from 
(24a) and the amplitudes a and a~ and phase shifts 0 and O k from (24b) and 
(24c). Here 3~k is the Kronecker delta. It should not be confused with the 
smallness parameter 3 k. 

Computationally this is done as follows: We rephrase B1, C1, qk, and 
qk' as 

B1 = ~ (Ijl 8j cos/~j + Ij2 3j sin/zj) (25a) 
t = 2  

C1 = ~., (Ii3 ~j cos t~j + li~ 8j sin/~j) (25b) 
j = 2  

qk = rk cos tzk + sk sin tLk (26a) 

qk' = sk cos tzk -- rk sin/zk (26b) 

We omit B~, C~, k > 2, from the remainder of this discussion since they are O(~), the 
magnitude of their corresponding q~ and q~'. 
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where 

;7 Ij~ = (1/rr) W'j(~b) sin 4~ d~ 

f? Ij2 = (lfir) O/~b) sin ~b d~ 

,r;~ = (1/,0 %(40 cos ~ a~ 

f7 Ij4 = (lfir) | cos ~b d 4 

with 

31 

(27a) 

(27b) 

(27c) 

(27d) 

8 8 ~(x 
�9 s(~b) = F x f ( X l ,  21) sinj~b + }7 j 1,21)jg~ cosj~ (28a) 

8 OM,) = ~ f (x l ,  Yq) cos j~  - ~f (x l ,  Yq)jnF sinj~b (28b) 

and where 

) fief( re = ( l f ira x l ,  21) sin k~ d~ (29a) 

f7 sk = (I/rra) f ( x l ,  21) cos k~b d~ (29b) 

By noting that 

a~ m) s in(mf2vt  + vm) = agF ) sin(mf~rt + 0 m - 0 m + vm) 

a p  ) a p  ) sin(Ore - Vm)2~ 
~--- ~mma COS(O m - -  V m ) X  m - -  (30 )  m 8m af~v 

the harmonics of the external signal F ( t )  may be expressed in terms of the 
corresponding harmonics of the sought periodic solution, 

a~l ' (  sin 0 d )  
F ( t )  = a  cosO f~v ~ xh 

ag ) [ sin(Ok - v~) d ]  
+ /-, 3~ LC~ - v,) - lf2v "~Jxk 3k, (31) 

k = 2  
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Thus, upon insertion of (31), Eqs. (24a)-(24c) can be written as 

d 
(32a) 

To initiate the iteration procedure, we neglect the contribution of (32c) 
and calculate a and 0 from (t8a) and (18b). These parameters are then 
inserted into (32c), which, upon Fourier transformation in the kf2F-plane, 
yields 

k(ikf2e) + O(ikf2,,) 3~(qk + iq~') 

a~ ) 
= O(ikf~F) ~za [cos(0k -- vz) -- i sin(0k -- vz)] ~k~ (33) 

Recognizing that 

q~ + iq~'= (rk + is~)e-~~ ~k~ (34a) 

cos(0k - v~) - i sin(0k - vk) = e-~~ ~ (34b) 

we can transform (33) into 

O ( ikf2v) ..(~) 3ke ~~ = O(ikf~F) (rk + isk)e ~k~ + -e eiVz 3, k (35) 
k(ikf~) k(ikf~) a 

which subsequently yields for the amplitudes and phase shifts 3k and Ok, 
respectively, 

I O(ikf2~) O(ikf2F) a~)e%3zk I (36a) 
3~ = l~(ik~e) (rk + isk)e ~k~ + R(ikOe) a 

ar_[ Q(ik~)F) O(ikf2F) ~(t) ] = "~ e ~ 3z~ (36b) 
] 

sin 0 d \ 3  . 
_ _  

d R ( d ) x ~ ( t ) + Q ( d ) 3 ~ l [  q~ +-k~Fq~'dt] xk(t) 

sin(0h - vt) ~]xk(t)  3kz (32c) = u ( d )  a~)[ -[-f2; d 
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For the particular case in which F(t) is a purely sinusoidal plus Gaussian 
excitation, i.e., a~ ) = 0, l/> 2, 

~ = [O(ikf~D/k(ikf~r)l(rk 2 + sk2) ~'2 (37a) 

Ok = arg[-O.(ikf2F)/R(ikf~F)] + tan-~(sk/r~) + kO (37b) 

By substituting the values of 8k and 0 h from (36a) and (36b) into the 
equation for the first harmonic (32b), one is able to obtain a more accurate 
determination for a and 0, a' and 0'. This refined amplitude and phase shift 
may be resubstituted into (36a) and (36b) to produce new amplitudes and 
phase shifts 3 k' and Off. This iterative procedure may be continued to 
Convergence. ] 

5. ON T H E  S T A T I S T I C S  OF T H E  R E S P O N S E  OF D U F F I N G ' S  
E Q U A T I O N  TO T H E  C O M B I N E D  EFFECT OF 
G A U S S I A N - D E L T A - C O R R E L A T E D  NOISE A N D  A 
H A R M O N I C  S I G N A L  

In this section we shall determine an expression for the autocorrelation 
function Rxx(t) for the Duffing anharmonic oscillator equation perturbed by 
the external excitation depicted in (13), 

5~ + ~Jc + ~o2X + fix 3 = ~:(t) + am sin ~Ft (38) 

The details and their generalization to a random excitation of the form 
presented in (21) are given in Appendix A. 

The procedure employed will be similar to the quasilinear Green's 
function method discussed in I and will therefore exhibit the non-Gaussian 
distortion terms, in contradistinction to the analysis of Section 4, introduced 
by the nonlinearity x 3. Furthermore, since the excitation has a periodic 
component, harmonic distortion terms and noise-harmonic interference 
terms will also appear. 

Utilizing the quasilinear Green's function method, x(t)  is transformed 
into a Green's function convolution equation 

fO c~ x ( t )  = 6 ( ~ ) { F ( t  - 7)  + 4 [ x ( t  - ~)])d~ (39) 

with. stationary autocorrelation function 

Rx):(t) = f f  d'cl d~2 GO'I)G('c2)[RFr(~) + Rr + Rrr162 + R~| (40) 
0 
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In Eqs. (39) and (40) the Green's function G(~), the error term r and the 
independent variable ~ are respectively defined as 

) 
G(r) ~(47-~ -Z V) I ,  ~- = 2 r , r > 0 (41a) 

1.0, ~ < 0  

r = [htxn(t) + hzxr - fix ~1 (41b) 

and 

= t + 72 - rt  (41c) 

with the effective frequency y in (41a) being 

~,2 = oJ02 + hi + h2 (42) 

and where the statistical linearization coefficients hi and h2 are given by (17a) 
and (17b). Evaluation of  these integrals for the cubic nonlinearity results in 

hx = 3/3(�88 2 + crx2 ) (43a) 

h2 = 3/3(-lza~ 2 + ax 2) (43b) 

which respectively represent the gain of the effective linear equations (18a) 
and (18b). Thus, in the statistical linearization approximation the effect of  a 
harmonic signal on noise is to shift the dispersion. 

In order to compute Rxx(t) from (40), we shall need closed form ex- 
pressions for R,r(~), RF,(~), and R**(~). Using the quasinormal assumption 
for these mixed autocorrelation functions, m one finds that 

RF~(~) = R,~(~) = h l R x ~ ( ~ )  + h~R~,x~(~) - R~(~) 
= �89 2 cos f2F~ + h2R~exr ) - RF~(~) (44a) 

R~r = h~2R~hxh(~) + h22Rx~x,(~) - 21~[h~Rx~x~(~ ) + h2R~(~) ]  

+/32R~8~3(~) (44b) 

Upon expanding RF~(~), Rx~:3(~), R~e~3(~), and R~3~3(~) by formula (A.8)or 
(A.22), we obtain 

Rv~(~) = hzR~h(~  ) + h~Rx~(~) (45a) 

[3R,:~a(~) = h~Rx~(~)  (455) 

t~Rx,~:~(~) = hzRx,~(~) (45c) 

fiZRx~x~(~) = h~ZR~:~xn(~) + h~.ZRx~e(~) + fi2{6Rg,~(~) 

+ ~ a v  ~ cos 3f2v~ + 18[R~e~e(~)Rx~x~(~) 

+ R~,~(~). a�89 ~ cos 2f~v~]} (45d) 
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RF~(~) and R ~ ( 0  reduce to 

R~.~(~) = R~e(0 = 0 (46a) 

R~o(~) =/32{6R~x~(~) + 3-~ae 6 cos 3f~F 

+ 18[R~x~(~)Rx~x.(O + R ~ ( ~ ) ' ~ a r  4 cos 2~2p~]} (46b) 

The first two terms in (46b) reflect the distortion of the purely Gaussian and 
first harmonic components of the autocorrelation function due to the 
nonlinearity. The final two terms portray the effects of interference between 
the Gaussian noise and the harmonic disturbance. 

Substituting Eqs. (46a) and (46b) into (40) finally results in the auto- 
correlation function ~ 

R ~ ( t )  f12 ( a~ 6 cos(3~)~t) 
Rx~( t )  = R~~ + (7 ~ _ n p ) ~  + ~ C 2 p  + 32[(~, ~ - 9C2~)  ~ + 9 ~ a p ]  

+ 6 dt'R(~ a r, o-~o ~ Jt ~ , ~  - t') + 3 [R~, ( t  - t')R~h~h(t -- t') 

+ Rx:~(t  -- t')~6aF" cos 2f2F( t -  t')]}] (47) 
] 

6. D I S C U S S I O N  

In the previous sections we have developed a systematic approximation 
scheme for the second-order statistics of nonlinear stochastic differential 
equations whose response contains random and quasiperiodic terms. This 
may come about, for example, for conservative systems perturbed by Gaussian 
noise and deterministic periodic excitations and for nonconservative systems 
perturbed solely by Gaussian noise, the latter exhibiting self-oscillations. 
This work is complementary to I and ]I, which treated nonconservative 
systems excited by Gaussian noise. Quasiperiodic response terms were there- 
fore absent. 

The framework of our approach rests upon a fusion of the methods of 
harmonic and statistical linearization, which as a first-order theory works 
quite well when the noise is wideband, i.e., Gaussian-delta-correlated. This is 
due to the damping out of the higher harmonics of the periodic signal and 
the high-frequency components of the random noise by the effective linear 
part of the system, I~(if2~)/~'(if2F)[. In this case--subject to applicability 
criterion 2--it  is therefore in order to assume a stable limit cycle solution 
which is periodic with respect to the first harmonic and of a purely Gaussian 
form without non-Gaussian distortion terms. 

If  the Gaussian noise spectrum is somewhat different from wideband, 
i.e., narrowband noise with spectrum lying outside of the passband of the 
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effective linear part of the system, one can still utilize statistical-harmonic 
linearization, but not on the differential equation directly. (7) Modification of 
the procedures involved are necessary in order to extend the range of applica- 
bility to once again bring the frequency band of the noise within the passband 
of the effective linear part of the system. This often requires choosing an 
alternative reference frequency to f~e when assuming a solution of x(t). 

Presumably one can dispense with, or at least minimize, the contribu- 
tions of these ad hoc methods with inclusion of higher harmonics and non- 
Gaussian distortion terms, but within the statistical-harmonic linearization 
paradigm. This is necessary in order to produce the closed form expressions 
(32) and (47). Convergence of the iterative scheme parallels that of the 
Popov-Palitov method. Convergence of the Hammerstein integral equation 
(47) has been discussed in I. Use of the latter expression (47) may permit us 
to relax applicability criterion 2 and study the transient behavior of unstable 
systems. It is also conceivable that further improvement on the basic 
statistical-harmonic linearizafion can be obtained by readjusting the variance 
via the Fokker-Planck method introduced in II. To actually determine 
whether these conjectures are in fact borne out necessitates some detailed 
numerical comparison on specific examples. At present work of this nature 
is being undertaken and will be presented in a future publication. 

A P P E N D I X  A. ON THE C O M P U T A T I O N  OF THE S T A T I O N A R Y  
T I M E  A U T O C O R R E L A T I O N  FUNCTION Rg(F)g(p)(t) 

In this appendix we delineate two procedures for computing the auto- 
correlation function Rg(F)9(v)(t) for the nonlinear random process g(F(t)) in 
which F(t), 

V(t) = ~(t) + a sin(wt + 0) (A.1) 

is comprised of Gaussian noise ~(t) and a harmonic signal a sin(oJt + 0) of 
amplitude a and phase 0. The phase 0 is either deterministic or uniformly 
distributed between [0, 2~r]. The averages o.ver the harmonic variable in 
Sections A1 and A2 are then either time or ensemble averages. Since time 
and ensemble averages over autocorrelation functions are respectively 
defined as 

[, 2nlo~ 

(co/27r) l F(a sin(w, + O))F(a sin[•(t + z) + 0]) d,  
a0 

and 

f0 2~ (1/2zr) F(a sin(wT + O))F(a sin[w(t + z) + 0]) dO 
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one can easily show that the use of either average will leave the appearance of 
all equations formally invariant. 

The first approach has been discussed in Ref. 1 and is related to the 
expansion of probability density functions in terms of an orthogonal poly- 
nomial basis. The second method makes use of characteristic functions and 
is due to Rice. (8~ While the former is the simplest to apply for random pro- 
cesses of the type characterized by (A.1), the latter is much more elegant, 
lends itself to simple physical interpretation, and is in principle generalizable 
to random processes of the type 

r(t)  = ~(t) + ~, a (k~ sin(,~,kt + 0h) (A.2) 

The summand in (A.2) may be either random or deterministic. For the 
former we choose the {Ok} as being comprised of n independent random 
phases uniformly distributed in the interval [0, 2v]. The frequencies o~ k may 
be commensurable or incommensurable. Formal equivalence between the 
time and ensemble average formulas in Section A3, however, will only hold 
when the ~% are incommensurable. This should be clear from the multi- 
plicative nature of the correlation function, since frequencies of the type 
~ + oJ z + corn _+ .-- appear. Commensurable frequencies, i.e., such fre- 
quencies that occur when the summand (A.2) is a Fourier series, will not admit 
the simple separable formulas (A.28)-(A.30), since the frequencies arising in 
(A.30) are not independent. Thus, in order to keep the discussion of all three 
subsections in line with each other, we shall consider all phases as random 
variables. 

A1. Probabi l i ty  Densi ty  Expansions 

Let g(F) be some odd, nonlinear, random function of  F having zero 
mean, (g(F)) = 0, and stationary time autocorrelation function 

Rg(v~g(F)(t) = f~ g(F1)g(F2)P(F1, F2) dF~ dr2 (A.3) 

defined over some domain ~ .  Here p(F~, F2) is the joint probability density 
function of F1 --- F(z) and F2 - F(t + r), which, due to the statistical 
independence of the Gaussian and harmonic random processes, may be 
decomposed into 

p(F~, F2) = p(~:~, ~e2)p(~h, '/2) (A.4) 

with ~h -= a sin ~, ~/2 = a sin(~ + ~ot), and q~ = oJ~- + 0. 
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The joint density functions P(~:I, ~:2) and PQ71, ~72) have orthogonal 
polynomial series expansions (1~ 

[ 1 -2\4  P(~I, f2) = 27r~e~cre-----~ exp - -  + 

~ 1 ( ~ )  ( ~ )  
x ~ p~( t )He~ H~ (A.5a) 

~ = 0  

P(~h,nz) = ~-~(a z - - .=o " " \ a ]  T" cos noJt 

(A.5b) 

and 

where 

1, n = 0 (A.7c) 
e~ = 2, n /> 1 

Substitution of (A.4) and (A.5) into (A.3) then yields for the autocorrelation 
function Ro(~,)g(~)( t ) 

R~w)g(F)(t) = f_+~ f+oo f + i f  + ~d~l d~2 d~l d~a g(F1)g(F2)p(~l, ~2)p(~7~, ~2) 
Qo ,I--o0 ~-- i ~-- i 

= ~ ~ ekP~l~2n(t)rl,n~r2,nk c~  
n = 0  k = 0  

= ~ al.a2.Pe~"(t) 
n = 0  

1[  +1 
r~,.~ = - d(sin 0)(1 - sin 2 0)-ll2Tk(sin 0) 

[ 1 (+o~ ( ~ )  ( _  ~2)) 
x ~(2~a~n!)l/2J_o~ dfg(F~)He,~ exp ~ , l = 1,2 (A.9a) 

(A.8) 

where He.(X) and T,~(x) are, respectively, Hermite and Tchebycheff poly- 
nomials with orthogonality relations 

f + He,~(x)Hem(X) exp( -  x2/2) = (2rr)l/2n! 3m. (A.6a) dx 
- o o  

f +l e.T,~(X)Tm(x)(1 - x2) -1/2 = ~r 3m. (A.6b) dx 
- 1  

The variance ax 2, normalized autocorrelation function pxx (t), and e. are 
defined by 

~,fl = (x2(t)) = Rx,} ~ (A.7a) 
pxx (t) = Rx~(t)/ax 2 (A.7b) 
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and 

alna2~ = ~ %rl,~kr2,~ cos kcot (A.9b) 
k = O  

A2. M e t h o d  of Character ist ic  Funct ions- -No ise  and 
Harmonic  Signal 

Characteristic function methods may also be used to find Rg(v~g~F~(t). 
The analytics involved, however, depends upon the integrability of g(F) and 
requires defining a linear transformation in the complex z plane, 

g(r) = (1/27r) fc  H(iz)e'~ dz (A. 10) 

which is to be evaluated over some contour C. 
For most cases of interest g(F) and H(iz) can be classified into the 

following categories �9 
(a) If g(F) is an L2 function, then C is any line parallel to the real axis 

which lies in the strip of analyticity of H(iz). Therefore H(iz) is the complex 
Fourier transform of g(F), 

f 
, - a o  

H(iz) = g(F)e-'~F dF 
oo 

and 

(A.11a) 

g(F) = ] H(iz)e"" dz (A. 1 l b) 
,~  - o o + f s  

(b) If  g(F) vanishes for F < O, then H(iz) is the Laplace transform of 
g(F), 

and 

H(iz) = g(F)e- ~v dF (A.12a) 

f 
- i s +  oo 

g(F) = H(iz)e ~ dz 
- - i S - -  oo 

(A.12b) 

(c) If  g(F) is a nonlinearity of polynomial type, g(F) = F 2N+1, such 
that g(F) ~ Go as F--+ + 0% then H(iz) may be computed by the generalized 
Fourier integral or the bilateral Laplace transform. 

We write g(F) as the disjoint union of two functions g+(F) and g_(F) 

g(F) = g+(F) + g_(F) (A.13) 
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having the properties that 

= f g ( F ) ,  
g+(F) ~0, 

{~ 
g_(F) - g(F), 

H(iz)  may therefore be similarly partitioned as 

H(iz)  = H+(iz) + H_(iz)  

fo F = g+(F)e - ~  dF + 
oo 

F > 0  
(A.14a) 

F < 0  

F > 0  
F < 0 (A.14b) 

g_ (F)e- ~zF dF (A. 15) 

with H+(iz) and H_(iz)  existing in their own strips of analyticity; for the 
former it is in the lower complex z plane and for the latter it is in the upper 
complex z plane. As a result of (A.15), g(F) may be represented as 

g(F) = 2-~J-,s-oo H+(iz)e'~V dE + 2-~Ls- o~ H-(iz)e'~V dF (A.16) 

For the purpose of the body of this paper the subsequent development 
will utilize (A.16) as the definition for g(F). Substituting (A.16) into (A.3) 
yields 

l f c f  c Rg(v)g(e)(t) = ~ + _ Hl(izx)H2(iz2)y(zl, z2) dzl dz2 (A.17) 

The contours of integration C + and C_ in the complex z plane run parallel 
to the real axis in such a manner so as to miss singularities along the imaginary 
s axis. Here y(zl, zz) is the characteristic function for the sum of the random 
variables F1 and Fz, 

y(z~, z2) = (exp i(Flz~ + F2z2)) (A.18) 

which, due to the statistical independence of ~(t) and the harmonic process, 
factors into the product of characteristic functions y~(zz, z2) and yh(z~, z2), 

7(zl ,  z2) = 7~(zl, z2)yh(zl, z2) (A.19) 

By noting that 

7~(zl, z2) = exp[-�89 2 + cr z ~ 2 ~2~2 + 2pr162 

D,~(zl)Dn(z2) (A.20) = ( -1)~ n! 
~ , = 0  

where 

Dn(&) = z~ ~ exp(-a~,z~2/2), i = 1, 2 
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and that 

1 (2~ 
= Jo 

1 (2~ 
=NJo 

1 (2~ 

= Jo(a[zl ~ + zz ~ + 2z~zz cos ~ot] l~z) 

= ~ ( -  1)%~Je(az~)Je(az~) cos ko~t 
k = 0  

eo = 1, e ~ = 2 ,  k >/ 1 

dO exp(ia{z, sin(wr + 0) + z2 sin[oJ(t + r + 0]}) 

de exp{ia[z, sin r + z2 sin(r + ~ot)]} 

d~ exp{ia[z~ 2 + z22 + 2zlz2 cos o)t cos(r + r ~I2} 
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(A.21) 

insertion of the series representations given in formulas (A.20) and (A.21) 
into (A. 17) results in 

Rg(p)g(~)(t) = ~ (a~l~2p~l~ 2) hl,~kh2,~ cos k~ot 
r * = 0  h : = 0  

2 " = al~a2~pel~(t) (A.22) 
n = 0  

The coefficients h~,~e and a~a2~ are expressed as 

(i) "+~ ( 
hz,.k = ~ Je H(izz)D.(zz)Jk(az~) dz~ (A.23a) 

al~a2. = % n! hl,~kh2,.~ cos k~ot (A.23b) 
h : = 0  

with the product coefficient a~.a2, numerically identical to that defined in 
(A.9b). Of special interest are the coefficients ho~ and h~o, since they are 
directly related to the coefficients of statistical linearization h~ and h2 

ho~ = h~a/2 (A.24a) 

hi0 = h2 (A.24b) 

One may assign a physical interpretation to the series in (A.22) by re- 
writing it as 

5 

Rg(F)g(r)(t) = ~.  Rg(~)g(e)(t) (A.25) 
m = O  
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in which each of the (") Rg(r~9(v~(t) corresponds to: 

(i) (o~ Ro(~g(~( t ) = h~o : 

(ii) (~ R~(v~g(v~( t ) = h~oR~m( t ) : 

(iii) (2) Rg(F)g(v~(t) = 2h021 cos ~ot: 

(iv) (3~ ~ h~o R ~ ( t ) :  
r~=2 

(v) (~ Rg~F~g(~(t ) = 2 h~k COS koJt: 
1 r  

(vi) (5~ " koJt: Rg~v~g~e~(t) = 2 ~ R~x~(t) cos 
r t =  l = " 

Aaron B. Budgor 

mean squared response. 

linear part of autocorrela- 
tion function due to the 
noise ~(t). 

linear part of autocorrela- 
tion function due to the 
harmonic process. 

nonlinear distortion of the 
autocorrelation function 
due to the noise f(t). 

nonlinear distortion of the 
autocorrelation function 
due to the harmonic 
process. 

the effect of superposing 
the harmonic and noise 
processes (interference). 

In particular, we consider as an example for the preceding the poly- 
nomial nonlinearity g(F) = F 2N + 1, N = 1, 2 ..... In this case 

H(iz)  = (2U + 1)I/(iz) 2(N+ 1~ (A.26) 

and the coefficients h,.,~ are to be evaluated over the Hankel contour. (8~ The 
statistical linearization coefficients h01 and hlo are therefore 

(a/2)2r~+ l(~2/2)N-m (A.27a) 
hol = (2N + 1)! m! (m + 1)! (N - rn)V 

m = 0  

and 

~(a/2) 2m(crr ~-'~ 
hlo = + 1)! 

m = 0  

(A.27b) 

A3. Method of Characterist ic Funct ions--Noise and Linear 
Combinat ion of Harmonic Processes 

The arguments of  Section 2 can be easily generalized to compute 
Rg~F~g(F~(t) when the random process F(t)  has the form given in (A.2). All the 
preceding formulas remain the same, but now, due to the statistical indepen- 
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dence of  all the random phases 0~, the characteristic function (A.18) factors 
into the product of n + 1 characteristic functions ye(z~, z~), 7u,(z,, z~),..., 
7~.(z~, z2), 

y(z~, zz) = re(&, z~) I-~ yn~(z~, zz) (A.28) 
h : = l  

Upon repeating the arguments of the last section, it is a simple matter to 
show that 

Ro(v~g(v>(t) = ~ 6~=a'~mpr162 (A.29) 
= = 0  

where 

almaz= = 

and 

"'" ((relar hl,m~>..k,h2,mlq...~, ~-I ek, COS k=~o~t 
kl = o ~. = o m ! ~= ~ (A.30a) 

f h, &,(a"z3 - H(iz,)Dm(z,) ~=~ dz, (a.3Ob) 

In the special case when the amplitudes a (~, k /> 2, are assumed to be 
small in magnitude and in comparison with a (z~, one may approximate the 
product  1-I~= 2 ,lkj(a(J~zz) by using Laplace's asymptotic formula ~9~ for .lk~(a(J~z~) 

(at/2)P/2-1 ( a=t2~ 
Jp12-t(at) = P(p/2) exp - "~'Pl (A.31) 

Since the product over the Jkj will become vanishingly small unless kj = 0, 
j = 2, . . ,  n, Rg(F~g(v~(t) may be suitably approximated with at,=~l...~, and 

alma2m as 

(i)m+~ ( H(izl)D=(zz)Jk~exp( &= 

al=a~m = ~ E/cz ~ " ~,=~o...o 2,=klO...o coskloJlt  (A.32b) 
/r 

Statistical linearization coefficients corresponding to (A.24) are h~,o~o...o and 

/~l,lO0,..O �9 
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